Neue Schutzschicht macht Akkus leistungsfähiger
In seinem Labor entwickelte El Kazzi ein Verfahren, das klimaschädliches Trifluormethangas in eine Schutzschicht für Hochspannungsakkus umwandelt, um damit deren Leistung zu erhöhen.
© Paul Scherrer Institute PSI/Mahir Dzambegovic
Ein Forschungsteam des Paul Scherrer Instituts PSI hat ein neues nachhaltiges Verfahren entwickelt, mit dessen Hilfe sich die elektrochemische Leistung von Lithium-Ionen-Akkus steigern lässt. Erste Tests entsprechend modifizierter Hochspannungsakkus verliefen erfolgreich. Damit könnten Lithium-Ionen-Akkus, zum Beispiel solche für Elektrofahrzeuge, deutlich effizienter werden.
Lithium-Ionen-Akkus gelten als Schlüsseltechnologie für die Dekarbonisierung. Deswegen arbeiten Forschende weltweit daran, deren Leistungsfähigkeit fortlaufend zu verbessern; unter anderem durch eine Steigerung der Energiedichte. «Eine Möglichkeit, dies zu erreichen, liegt darin, die Betriebsspannung zu erhöhen», sagt Mario El Kazzi vom Zentrum für Energie- und Umweltwissenschaften am Paul Scherrer Institut PSI. «Steigt die Spannung, so steigt auch die Energiedichte.»
Jedoch gibt es da ein Problem: Bei Betriebsspannungen von über 4,3 Volt finden am Übergang von Kathode, dem Pluspol, und dem Elektrolyten, dem Leitmedium, starke chemische und elektrochemische Abbauprozesse statt. Die Oberfläche der Kathodenmaterialien wird durch die Freisetzung von Sauerstoff die Auflösung von Übergangsmetallen und die strukturelle Rekonstruktion stark geschädigt – was wiederum einen fortlaufenden Anstieg des Zellwiderstands und einen Kapazitätsabfall zur Folge hat. Deswegen laufen kommerzielle Batteriezellen, zum Beispiel die von Elektroautos, bisher auch nur mit maximal 4,3 Volt.
Eine einfache Methode für die Synthese neuartiger Anodenmaterialien auf der Basis von β-SiC-Nanopartikeln
Um dieses Problem zu lösen, haben El Kazzi und sein Team eine neue Methode entwickelt, mit der sich die Oberfläche der Kathode stabilisieren lässt, indem diese mit einer dünnen gleichmässigen Schutzschicht überzogen wird. Über ihre Entdeckung berichten die Forschenden in einer Studie im Fachblatt ChemSusChem .
Im Mittelpunkt des Verfahrens steht ein Gas, das bei der Herstellung von Kunststoffen wie PTFE, PVDF und Schaumstoff als Nebenprodukt entsteht: Trifluormethan mit der chemischen Summenformel CHF3. Im Labor leiteten El Kazzi und sein Team bei 300 Grad Celsius eine Reaktion zwischen dem CHF3 und der dünnen Schicht aus Lithiumkarbonat ein, welche die Oberfläche der Kathoden bedeckt. Dabei wandelt sich das Lithium an der Grenzschicht in Lithiumfluorid um. Wichtig dabei: Die Lithium-Atome des Kathodenmaterials bleiben dabei als Ionen erhalten, also als positiv geladene Teilchen. Diese Lithium-Ionen müssen nämlich beim Laden und Entladen zwischen der Kathode und der Anode, dem Minuspol, weiter hin- und herwandern können, damit die Akkukapazität im späteren Betrieb nicht beeinträchtigt ist.
In einem weiteren Schritt prüften die Forschenden die Wirksamkeit der Schutzschicht, indem sie elektrochemische Tests bei hohen Betriebsspannungen durchführten. Das erfreuliche Ergebnis: Die Schutzschicht blieb auch bei hohen Spannungen stabil. Sie schützt das Kathodenmaterial so gut, dass Betriebsspannungen von 4,5 und sogar 4,8 Volt möglich sind.
Im Vergleich zu Batterien mit ungeschützten Kathoden schnitten die beschichteten bei allen wichtigen Parametern deutlich besser ab. So war die Impedanz, also der Widerstand für die Lithium-Ionen an der Grenzfläche der Kathode, nach einhundert Auf- und Entladedurchgängen um rund 30 Prozent niedriger als bei den Batterien mit unbehandelter Kathode. «Ein eindeutiges Zeichen dafür, dass unsere Schutzschicht den Anstieg des Widerstandes abschwächt, der durch die sonst stattfindenden Grenzflächenreaktionen auftritt», erklärt El Kazzi.
Verglichen wurde auch der Kapazitätserhalt. Dieser steht für die Menge an Lithium-Ionen, die nach einer bestimmten Anzahl Auf- und Entladedurchgängen immer noch von der Kathode zur Anode wandern können. Je näher dieser Wert an 100 Prozent liegt, desto geringer ist der Kapazitätsabfall. Auch hier erwies sich der Akku mit beschichteter Kathode in den Tests als überlegen: Der Kapazitätserhalt lag bei über 94 Prozent nach 100 Lade- und Entladedurchgängen ohne Abnahme der Ladegeschwindigkeit, während der unbehandelte Akku auf nur 80 Prozent kam.
Das am PSI entwickelte Beschichtungsverfahren öffnet neue Wege, die Energiedichte von verschiedenen Batterietypen zu steigern: «Wir können davon ausgehen, dass unsere Lithiumflorid-Schutzschicht universell und bei den meisten Kathodenmaterialien anwendbar ist», betont El Kazzi. «Sie funktioniert zum Beispiel auch bei Nickel- und Lithium-reichen Hochspannungsbatterien.»
Ein weiterer wichtiger Aspekt des neuen Verfahrens: Trifluormethan ist ein hochwirksames Treibhausgas und mehr als 10 000-mal klimaschädlicher als Kohlendioxid, weswegen es keinesfalls in die Atmosphäre gelangen sollte. Für El Kazzi stellt die Umwandlung in eine einheitliche dünne LiF-Schutzschicht auf der Oberfläche von Kathodenmaterialien eine effiziente Lösung dar, das Gas zu monetarisieren, indem es Teil einer Kreislaufwirtschaft wird. Mit dem neuen Beschichtungsverfahren lässt sich CHF3 recyceln und als Schutzschicht in Hochspannungskathoden langfristig binden.
Aleš Štefančič, Carlos Antonio Fernandes Vaz, Dominika Baster, Elisabeth Müller, Mario El Kazzi; „Converting the CHF3 Greenhouse Gas into Nanometer‐Thick LiF Coating for High‐Voltage Cathode Li‐ion Batteries Materials“; ChemSusChem, 2025-1-3
Effizienter Syntheseweg zur Herstellung eines neuartigen kodotierten Anodenmaterials für wiederaufladbare Meerwasserbatterien
Meistgelesene News
Originalveröffentlichung
Aleš Štefančič, Carlos Antonio Fernandes Vaz, Dominika Baster, Elisabeth Müller, Mario El Kazzi; „Converting the CHF3 Greenhouse Gas into Nanometer‐Thick LiF Coating for High‐Voltage Cathode Li‐ion Batteries Materials“; ChemSusChem, 2025-1-3
Themen
Organisationen
„Wir wollen ein selbstlernendes KI-System entwickeln, das einzelne Moleküle schnell, gezielt und in der richtigen Ausrichtung platziert, und das alles völlig autonom“
Forschende beobachten und kontrollieren ultraschnelle Oberflächenwellen in Graphen
Neue Perspektiven für die Entwicklung nachhaltiger organischer Materialien in der Photokatalyse und Optoelektronik
In einer hybriden Kaskade wird aus klimaschädlichem CO2 wieder wertvolles Methanol
Die ungiftige Beschichtung bietet sicherere Lösungen gegen Feuer
Elektrolyt-Additive für verbesserte Energiespeicherung: „Synchrotrontechniken bieten leistungsstarke Werkzeuge zur Charakterisierung von Batteriematerialien“
Materialien mit negativer Wärmeausdehnung als Elektroden für Lithium-Ionen-Batterien
Ein neuer Ansatz für effektive thermoelektrische Kühlung bei niedrigen Temperaturen
Automatisierte Analysemethode zur Beschleunigung des Entdeckungsprozesses bei Einzelatomkatalysatoren
Forscher veränderten Bakterien in der Abwasserbehandlung
Mikrobiologie trifft Elektrotechnik
Degradationsprozesse im Blick
Erstmals unerwünschtes organisches Abfallprodukt in der Redox-Flow-Batterieforschung verwendet
„Unsere Methode verwendet nachhaltige, kostengünstige Katalysatoren und arbeitet bei Raumtemperatur mit sanftem blauem Licht“
Mit diesem Durchbruch werden zwei Umweltprobleme auf einmal angegangen
Eine wahre Goldgrube
Profitieren Sie von moderner Messtechnik und einem erfahrenen Team
Boosten Sie Ihren Batterie-Slurry-Prozess
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Forscher der Case Western Reserve University entwickeln Zink-Schwefel-Batterietechnologie weiter
Mit diesem Durchbruch werden zwei Umweltprobleme auf einmal angegangen
Eine wahre GoldgrubeMögliche Anwendung für selbstreinigende Oberflächen in Automobilen oder GebäudenOhne jeglichen Kohlenstoff-Fußabdruck
Ein maßgeschneiderter „Superman-Umhang“ für Bakterien
Erstmals unerwünschtes organisches Abfallprodukt in der Redox-Flow-Batterieforschung verwendet
In einer hybriden Kaskade wird aus klimaschädlichem CO2 wieder wertvolles Methanol
ETH-Spin-off Aeroskin Tech entwickelt eine innovative Wärmedämmung, die dank Aerogel-Technologie Gebäude effizienter und nachhaltiger isoliert
Mikrobiologie trifft Elektrotechnik
Forschungsergebnisse wurden an das Biotech-Start-up BioRevert übertragenBauchspeicheldrüsenkrebszellen haben einen erhöhten Spiegel an Wasserstoffperoxid
Warum eine seit langem eingesetzte Kombinationstherapie gegen schwarzen Hautkrebs besser wirkt als die EinzelwirkstoffeMit einem neuen Ansatz lässt sich die Form eines ungeordneten Proteins auf zwei verschiedene Arten bestimmen – an derselben Probe
Erstmals Struktur und Funktionsweise des Zorya-Systems beschriebenGrundlage für neue Behandlungsstrategien gegen Krebs
Neuer Prozess erstmals entdeckt und beobachtet
Genetischer Werkzeugkasten im Einsatz
Meta-Analyse früherer Studien deutet auf positive Wirkung hinNeue superauflösende mikroskopische Methode entwickelt
„Es ist selten, dass ein Molekül gegen so viele verschiedene Grippeviren schützen kann“Forschende haben einen Mechanismus identifiziert, der möglicherweise die neurologischen Symptome von Long COVID erklärt
Neuartiges Antibiotikum
Adstringenter Geschmackseindruck ist Folge eines Schmierdefekts im Mund
Biosensoren zeigen Verhältnis von NADPH zu NADP⁺ erstmals in lebenden Zellen in Echtzeit an
Langsame Gehirnwellen machen Hirnrinde besonders aufnahmebereit
Rotkohl aus dem Glas hat weniger Vitamin C, der aus Standbeuteln oft fast null
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können
Algorithmus für besonders exakte Beurteilung von Hirnschäden
29 Whey-Protein-Produkte geprüft, die per Flagge oder mit „made in Germany“ oder „Ursprungsland Deutschland“ werben.Vereinbarung umfasst den Produktionsstandort in Illertissen
Eine neue Studie legt nahe, dass die Zunge neben süß, salzig, sauer, bitter und umami auch Ammoniumchlorid als Grundgeschmack wahrnehmen kann
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.
Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.